
The choice of propellants: a similarity analysis
of scramjet second stages

By Jack Pike
APECS Ltd, 3 Hawkley Hurst, Hawkley, Hants GU33 6NS, UK

Scramjet-powered vehicles with similar shapes and the same second stage trajectory
to orbit are used to establish relationships between the vehicle volume, the vehicle
launch mass and the payload mass. It is shown that increasing the fuel density or
the payload density can increase the payload mass, while simultaneously decreasing
the vehicle launch mass. The maximum payload mass without a volume constraint
is found to be half the dry mass. Practical volume constraints are shown to reduce
this fraction.
To increase the scramjet thrust, additional propellant is often injected into the

scramjet flow. It is shown here that for a hydrogen-fuelled vehicle, replacing this
additional hydrogen with neon or with a hydrogen–oxygen mixture can significantly
increase the payload and decrease the launch mass. It is shown also, for less rigorous
assumptions, that replacing the scramjet hydrogen fuel with a hydrocarbon fuel can
have the same effect, such that a vehicle to place a given payload in orbit can be
both smaller and less costly.

Keywords: hypersonic vehicle; air-breathing orbiter; scramjet propellants;
orbiter scaling; orbiter size variation

1. Introduction

For vehicles that are designed to put a payload into orbit, the mass and volume of
the fuel is of critical importance (Hardy 1993; Weingartner 1993; Weinreich et al .
1993; Ardema et al . 1995). There is a strong incentive to reduce the liquid oxygen
(LOX) propellant mass by using an air-breathing system for part of the trajectory
and to reduce the fuel volume by using fuels that are denser than liquid hydrogen
(LH2). Some studies (Hardy et al . 1993; Weinreich et al . 1993; Ardema et al . 1995)
of scramjet-powered vehicles have been made, which show that careful integration
of the scramjet into the design is necessary to obtain a worthwhile payload. Here we
study more generally the relationship between vehicle volume, payload and launch
mass, and suggest ways of improving the performance of scramjet-powered vehicles.
The rationale for using LH2 as fuel for a rocket or scramjet rests with its high

specific impulse and its potential for cooling parts of the vehicle. However, the larger
engine weight of the scramjet makes it desirable to increase the scramjet thrust by
adding hydrogen to the engine flow beyond the stoichiometric burning ratio, or alter-
natively, in some cases to add inert gases to the flow (Rudakov & Krjutchenko 1990).
Hydrocarbons can be expected to provide sufficient cooling up to Mach numbers in
excess of 10, giving the potential to replace the stoichiometric LH2 with a hydrocar-
bon for these Mach numbers. It is then unclear which is the most suitable propellant
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or mixture of propellants for the vehicle to maximize the payload, or alternatively
to reduce the vehicle size and cost.
The performance of different propellants can only be fully assessed by considering

their effects not only on the engine thrust, but also on the aerodynamics and structure
of the vehicle. Here we concentrate on the aerodynamics and the structure to provide
a measure of the potential gains available, and to provide a framework against which
the performance of the different propellants for the engine can be judged. The more
difficult problem of assessing engine efficiency is not attempted here, but typical
values are taken from the literature to enable us to address the important problem
of how and whether other fuels may be preferable to LH2 for scramjets.
During the flight to orbit the vehicle will experience a wide range of aerodynamic

conditions. In particular, during the latter stages of the flight as orbital conditions
are approached, high Mach numbers and low Reynolds numbers will be experienced.
However, for the scramjet phase of the flight the maximum atmospheric height is
limited by the need of the intake to capture sufficient air, which requires typically a
dynamic pressure of ca. 70 kPa. At Mach 10 this translates into an atmospheric height
of ca. 30 km and a Reynolds number of about 107 per metre. Thus, low-Reynolds-
number flight is not expected during scramjet operation and will be confined to the
final rocket-powered phase of the flight, where the aerodynamics are less important
as the rocket thrust must be expected to be large compared with the vehicle drag.
The aim of the analysis is to increase the payload mass to orbit for a given launch

mass, or alternatively, for a given payload, to reduce the size and/or launch mass of
the vehicle. Fundamental parameters of the analysis are a volume ratio and a mass
ratio for the vehicle. These are taken to be the payload-mass/dry-mass ratio (rm)
and the payload-bay-volume/fuel-tank-volume ratio (rv). Many of the results can be
quoted simply in terms of these ratios. There can be uncertainty as to which items
represent the payload and which represent the vehicle dry mass. This difficulty is
discussed in § 3, and care needs to be taken to ensure valid definitions are used.

2. Similar trajectory vehicles

The method of analysis is to study vehicles that have identical trajectories to orbit.
This is either the whole trajectory or the trajectory after some reference condition
(e.g. after second-stage launch) where the velocity and altitude are the same. Suppose
we have a vehicle with an optimum trajectory to orbit from some reference condition,
then a requirement for another vehicle to have the same trajectory is that the vehicle
acceleration after the reference condition is the same as the reference vehicle and that
it follows the same path. The vehicle acceleration depends on the vehicle thrust minus
the drag over the vehicle mass, and hence this must be the same for both vehicles
throughout the time of the matching flight.
Suppose the (external) shape of the second vehicle is similar to the reference vehicle

but is scaled by a factor l in all directions. Then the volume of the vehicle varies as
l3 and the surface area as l2. For moderate changes in l the lift and drag coefficients
will be very nearly constant, because changes in the friction-drag coefficient will be
small. For example, a typical variation of the friction-drag coefficient is given by
that of turbulent flow over a flat plate, for which the friction-drag coefficient varies
approximately as the minus one-sixth power of the length. In this case an increase of
10% in the length will give a one-third increase in the vehicle volume but only slightly
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over 1% change in the turbulent friction-drag coefficient. The lift and pressure-drag
coefficients remain largely unaffected. There could be some increase in the boundary-
layer-induced pressure drag at low Reynolds numbers as the vehicle goes into orbit
during the final rocket propelled phase of the flight, but by this time the vehicle
drag is small and is greatly exceeded by the rocket thrust. Thus the variation in the
integrated drag coefficient must be expected to be well under 1% even for a volume
change as large as 1

3 , and the lift and the drag may be taken to vary effectively as
l2. The intake capture area will also vary as l2; hence if we assume a fuel flow that
varies as l2 to maintain the same scramjet fuel-to-air ratio, then the thrust from the
engine must be expected to vary as l2 also (i.e. the specific thrust is constant). Thus
to obtain the same acceleration for this class of vehicles, the vehicle mass throughout
the flight (including the initial or launch mass mt) is also required to vary as l2.
We also require that the vertical acceleration matches the difference in the lift and

weight of the vehicle throughout the flight, including centrifugal effects. As the lift
and vehicle mass both vary as l2, the wing loading will be constant and the vertical
acceleration of the scaled vehicle will be the same as that of the reference vehicle, as
required.
There could, however, be some problems with vehicle cooling using the fuel flow.

The fuel flow varies as l2, but for some areas of cooling, the required cooling varies
linearly with l. Thus the cooling of smaller vehicles may be more difficult. This
potential complication is ignored here.

3. Vehicle mass analysis

The vehicle mass is divided into the vehicle dry mass, the payload, the scramjet
fuel (including any additive propellants such as oxygen or neon) and the rocket
propellants, i.e.

mt = mdry + mp + ms fuel + mrprop. (3.1)

For the case where the vehicle is powered only by a rocket, the scramjet fuel mass
ms fuel will be zero. We have shown that for the vehicle to maintain the same tra-
jectory the vehicle mass and the scramjet fuel rate of flow vary as l2. For constant
rocket-engine efficiency the rocket propellant mass will scale as the total vehicle
mass. Hence we have not only that the total mass, but also the various components
of vehicle mass, vary as l2. That is

mt

mt0
=

ms fuel

ms fuel0
=

mrprop

mrprop0
=

mdry + mp

mdry0 + mp0
= l2. (3.2)

This equation holds throughout the flight to orbit, but of most interest are the launch
conditions, and generally we interpret the quantities as referring to launch conditions,
unless otherwise stated.
To separate the payload and dry mass in equation (3.2), we need to assess how the

dry mass will change with the vehicle scaling. The scaled vehicle retains the same
shape and wing loading as the reference vehicle; hence the length of the structural
elements can vary linearly with the vehicle length, and the structure mass part of
the dry mass will then vary as l3. There may be other components of the dry mass
that vary in a different manner with the vehicle size, so that the dry mass is more
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generally expressed as a polynomial in l, i.e.

dry mass = a0 + a1l + a2l
2 + a3l

3 + · · · (3.3)

with the major coefficient expected to be a3. The a0 coefficient represents components
that do not change with vehicle length (e.g. the crew members (if any), their cabin
and the control system computers) and a2 represents components that scale as l2

(e.g. tank insulation). The other coefficients (a1, a4, etc.) are assumed to be small
throughout and are best gathered together with the a3 term to give a term of form
ln where n is close to 3. Often the a0 and a2 terms are also sufficiently small to be
included with the ln coefficient, giving

mdry

mdry0
= ln. (3.4)

If the a0 and a2 coefficients are larger, they are included separately in the analysis
by careful redefinition of the dry mass and payload. To accommodate the a2 term,
the dry mass and the total mass in equation (3.1) are defined to be the total of
the masses without this a2 term, that is without the insulation mass and any other
components of the dry mass which vary as l2. Because the total mass varies as l2,
removing this mass from consideration in the total mass and dry mass terms makes
no difference to the analysis. The accommodation of the a0 term is straightforward
because it does not give any change in mass on scaling, so a0 can be included with the
payload, again without altering the analysis. Thus we have as definitions of mt, mdry
and mp

mt = total mass − a2l
2, (3.5)

mdry = dry mass − a0 − a2l
2 = mdry0l

n, (3.6)
mp = payload mass + a0. (3.7)

Substituting for mdry in equation (3.2) and rearranging gives the payload mass as a
function of the launch mass for a vehicle scaled in such a manner as to maintain the
same trajectory to orbit, i.e.

mp

mp0
=

mt

mt0

(
1 +

1
rm0

− 1
rm0

(
mt

mt0

)(n/2)−1)
, (3.8)

where rm0 is the payload mass over the dry mass for the reference vehicle (i.e.
mp0/mdry0).

The variation of the payload with vehicle mass, as given by equation (3.8), is
shown in figure 1 for the case rm0 = 1

3 . The reference condition is indicated by the
circled point at mt/mt0 = 1, mp/mp0 = 1. We see from the continuous curve showing
mp/mp0 that as the vehicle launch mass falls the payload mass increases and reaches
a maximum before declining with any further decrease in the launch mass.
An important parameter is the ratio of the payload mass to the vehicle mass

(rm). The change in rm for the scaled configurations is shown by the stippled line
in figure 1 to increase steadily with reducing vehicle mass. Any point on the payload
curve could have been chosen as the reference configuration in our example, by taking
the appropriate value of rm as rm0. The payload curve would then be the same as
the curve shown with the appropriate scaling to the new reference point.
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Figure 1. Payload variation with vehicle mass (mp0 = 1
3 ).

Returning to the variation of payload mass as expressed by mp/mp0, we can find
the rate of change of payload with vehicle mass by differentiating equation (3.8), to
give

d(mp/mp0)
d(mt/mt0)

= 1 +
1

rm0
− n

2rm0

(
mt

mt0

)(n/2)−1

. (3.9)

That is, near the reference vehicle condition (when mt/mt0 = 1), the incremental
change in payload with launch mass is given simply by 1+(1− 1

2n)/rm0. For a payload
mass less than the dry mass (i.e. rm0 < 1) and n close to 3, under the present type
of scaling the payload will increase with decreasing vehicle mass until we obtain a
maximum payload.
The condition for the payload to be a maximum is easily found from equation (3.9)

by setting the gradient (dmp/dmt) to zero, i.e.
(

mt

mt0

)
opt

=
(
2
n
(1 + rm0)

)2/(n−2)

. (3.10)

Putting this value of mt/mt0 in equation (3.8) gives
(

mp

mp0

)
max

=
(
1 − 2

n

)(
1 + rm0

rm0

)(
2
n
(1 + rm0)

)2/(n−2)

, (3.11)

which for n = 3 reduces to (
mp

mp0

)
max

= 4
27

(1 + rm0)3

rm0
. (3.12)

That is, for a given vehicle with a known ratio of payload to dry mass, we can imme-
diately assess the maximum increase in payload that can theoretically be achieved
when the vehicle is scaled so as to maintain the same trajectory to orbit.
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Before introducing the volume constraints necessary for a practical vehicle, we
determine the ratio of the payload mass to the dry mass (rm) for the maximum-
payload vehicle. Any vehicle on the similarity curve may act as a reference vehicle.
Suppose we choose the maximum-payload vehicle as reference. Then the left-hand
side of equation (3.10) has value 1, and the value of rm at the maximum from the
right-hand side will be 1

2n − 1. That is, when n = 3, the maximum payload is
half of the dry weight. Whether this optimum ratio can be realized depends upon
other vehicle constraints, as will be shown. Whatever other constraints are applied,
however, the maximum-payload vehicle remains of interest, because it gives a measure
of the payload foregone by applying these other constraints.

4. Vehicle volume analysis

With the linear scaling of the structure used here, the internal volume of the orbiter
varies as l3. The major volume components are the propellant volumes and the
payload-bay volume, with most of the smaller components fitting into the spaces
surrounding these structures. Thus we may assume that the sum of the payload-bay
volume and the propellant-tank volume will vary as l3. Note that the constraint is
applied to the volume of the payload bay and not to its shape, with the result that
the scaling can cause changes in the payload-bay and propellant-tank shapes. The
tanks hold both the scramjet fuel and the rocket propellants. Thus for the volume
of payload and propellant tanks we have

Vt = Vp + Vtank = Vp + Vs fuel + Vrprop (4.1)

and the tank volume for the scaled vehicle is given by

Vtank = Vt0l
3 − Vp (4.2)

with the reference-tank volume, Vtank0, given when l = 1 by Vt0 − Vp0. To maintain
the same trajectory with the same type of fuel, we have seen that the fuel-mass flow
scales as the vehicle mass and l2, such that the required tank volume also scales as
l2. Then rearranging equation (4.2) and substituting for l we have

Vp

Vp0
=

1
rv0

mt

mt0

(
(1 + rv0)

√
mt

mt0
− 1

)
, (4.3)

where rv0 is the payload volume over the total propellant-tank volume of the reference
vehicle, i.e.

rv0 = Vp0/Vtank0. (4.4)

We are now able to consider the variation of payload volume with payload mass: that
is, the permissible payload density for the vehicle. In figure 2 the payload mass is
again shown as a function of vehicle mass for rm0 = 1

3 by the continuous line. If for
the reference vehicle, the payload-bay volume is a quarter, a half, three-quarters or
equal to the fuel-tank volume, then the variation of Vp/Vp0 with mt/mt0 is shown by
the stippled lines coming from the reference vehicle point at (1, 1). We see that the
payload volume decreases rapidly with vehicle mass until it becomes zero at some
finite vehicle mass, which for rv = 1

2 is just less than the maximum payload condition.
Thus a major constraint preventing the reduction of the vehicle launch mass while

Phil. Trans. R. Soc. Lond. A (1999)



The choice of propellants 2363

1
0

1

2

mt/mt0

mp/mp0

Vp/Vp0

0

when rv0 = 1

rm0 = 1/3

3/4 1/2 1/4

Figure 2. Payload-bay volume variation with vehicle mass for various rv0.
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Figure 3. Variation of payload with vehicle mass for various payload-bay volume assumptions.

increasing the payload mass is the requirement to stow the fuel and payload. As
payload volume and fuel volume are largely interchangeable, there is considerable
incentive to use a denser fuel or payload, or to use a more efficient tank arrangement
within the vehicle.

(a) Multiple reference vehicles

Suppose we have knowledge of more than one vehicle having different shapes and
different trajectories to orbit. For example, the performance of a set of second-stage
scramjet orbiters (L. H. Townend & R. A. East, personal communication) is shown
by the black circles on figure 3 for vehicles of launch mass 110, 120, 130 and 140 Mg,
respectively. Each of the reference vehicles has a different shape and trajectory, but

Phil. Trans. R. Soc. Lond. A (1999)



2364 J. Pike

we may reasonably interpolate between them to obtain a sequence of reference vehi-
cles. Any of these reference vehicles can then be used by the similarity analysis to
estimate the effects of varying the launch mass while keeping the trajectory, fuel type
and vehicle shape (but not size) constant. By applying the similarity analysis to a
sufficient number of these vehicles, the (payload versus vehicle mass) space of fig-
ure 3 can be carpeted with vehicles of known payload volume and tank volume. This
carpet is shown on figure 3 by the many dotted curves plotted across the figure. The
reference configuration in each case is obtained from the intersection of the dotted
line with the interpolated line through the four reference vehicles given.
As the mass of the payload varies we can now assess the effect of different con-

straints on the payload volume. For example, we can keep the payload-bay vol-
ume constant, let the payload-bay size vary linearly with the vehicle size or let the
payload-bay size vary linearly with the payload mass (referred to as the constant
payload density condition). Suppose we consider the 130 Mg vehicle and keep the
payload volume constant at 150 m3. Then by picking off this value on the similarity
curves from the other reference vehicles we can obtain the change in payload with
vehicle mass. This line is shown on figure 3 as the steepest line, showing that as the
vehicle mass reduces, the payload mass rapidly becomes smaller. Thus the potential
for reducing the vehicle size is very limited under this constraint. Alternatively, if
we permit the payload-bay volume to vary as the vehicle size, then we obtain the
line through the reference values, indicating that this was a parameter in their selec-
tion. Perhaps the most reasonable criterion is to vary the payload-bay size with the
payload mass. The variation of the payload with the vehicle mass is then given by
the least steep of the three lines; but the payload mass still falls with the vehicle
mass. This demonstrates the dominating influence the fuel and payload-bay volume
requirements have on the payload mass. Each of these variations in payload-bay vol-
ume is so restrictive as to eliminate any indication of the increase in payload with
decreasing vehicle mass which was found when there were no volume constraints
applied. The maximum payload with no volume restrictions is shown by the dashed
line in the top-left hand corner of figure 3.
The important variations in the payload mass and payload-bay volume obtained

by scaling the vehicle to maintain the same trajectory are given by equations (3.8)
and (4.3). From these equations we have shown that a reduction in the vehicle size
(and mass) may increase the payload mass, but the payload-bay volume is rapidly
reduced. It is important then to specify the highest practical payload ‘density’ for
the vehicle, and to consider increasing the fuel density.

(b) Fuel-density change

Equation (4.3) and the subsequent results assume the vehicle uses the same fuel
throughout the scaling. Suppose, however, we substitute another fuel, which is equiv-
alent to the original fuel in that it gives the same thrust for the same mass flow, but
that the fuel is denser. Then the ratio of the tank volumes required is given by

Vtk =
Vs fuel0ρs0/ρs + Vrprop0ρr0/ρr

Vs fuel0 + Vrprop0
, (4.5)

where ρs and ρr are the new bulk scramjet fuel and rocket propellant densities. Then
the value of Vtank for a scaled vehicle with the replaced fuel becomes VtkVtank0l

2, and
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the payload-bay volume is given similarly to equation (4.2) by

Vp

Vp0
=

1
rv0

mt

mt0

(
(1 + rv0)

√
mt

mt0
− Vtk

)
. (4.6)

Note that this equation gives the payload-volume variation for a denser fuel via Vtk
and a vehicle size change via mt/mt0 where rv0 refers to the original reference vehicle.
Assuming the same three constraints on the payload-bay volume, we consider first
the constant payload density case, when Vp/Vp0 = mp/mp0. Equating equations (3.8)
and (4.6), with n = 3, gives the vehicle mass change with fuel density as

mt

mt0
=

(
1 − rm0(1 − Vtk)

rv0 + rv0rm0 + rm0

)2

. (4.7)

Substituting this value in equation (3.8) for payload mass gives

mp

mp0
=

(
1 − rm0(1 − Vtk)

rv0 + rv0rm0 + rm0

)2(
1 +

1 − Vtk

rv0 + rv0rm0 + rm0

)
. (4.8)

For the usual case where rv0 is less than 1
2 , equations (4.7) and (4.8) show that

increasing the fuel density (so Vtk < 1) both decreases the launch mass mt and
increases the payload mass mp.
As an alternative constraint, let the payload-bay volume scale with the vehicle

volume, such that rv is constant and

Vp/Vp0 = l3 = (mt/mt0)3/2, (4.9)

giving similarly
mt

mt0
= V 2

tk, (4.10)

mp

mp0
= V 2

tk

(
1 +

1
rm0

− Vtk

rm0

)
. (4.11)

Again, decreasing Vtk reduces mt and increases mp but at different rates to the
constant payload density case.
Finally, consider the constant payload-bay volume case when Vp/Vp0 = 1. The

algebra is more complicated for this simplest constraint. Equation (4.6) becomes

rv0 =
mt

mt0

(
(1 + rv0)

(
mt

mt0

)1/2

− Vtk

)
, (4.12)

which requires the solution of a cubic to give mt, and it is most easily solved numer-
ically.
These changes in the payload and launch mass with the fuel-tank capacity for

the three payload-bay volume constraints are shown for a typical configuration in
figure 4. The reference configuration is shown at the convergence of all the plots at
point 1 on the right-hand axis, and is assumed to have rm0 = 1

3 and rv0 = 1
2 . As the

fuel density increases, the required tank capacity expressed by Vtk in equation (4.5)
falls. In figure 4, as Vtk falls all three curves of payload mass rise initially and those for
launch mass fall. The most rapid changes occur for the stippled lines, which represent
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Figure 4. Payload and vehicle launch mass variation with fuel density.

the payload-bay volume changing with vehicle size. The more interesting constraints
on constant payload-bay volume and constant payload density are shown by the large
dots and the continuous lines, respectively. These still show an increasing payload and
falling vehicle mass, but more slowly than for the case where the payload-bay volume
changes with vehicle size. As expected, the maximum is equal for all three constraints
and it is the same as the optimum payload without any volume constraints.

(c) Fuel change near the reference conditions

Of particular interest is the change in the payload near the reference condition. At
the reference, the incremental change in the vehicle and payload masses in terms of
the payload-mass/dry-weight ratio rm0 and the payload-volume/tank-volume ratio
rv0, can be obtained for the constant density payload constraint by differentiating
equations (4.7) and (4.8) and setting Vtk equal to unity, i.e.

(
dmt/mt0

dVtk

)
0
=

2rm0

rv0 + rv0rm0 + rm0
, (4.13)

(
dmp/mp0

dVtk

)
0
=

2rm0 − 1
rv0 + rv0rm0 + rm0

. (4.14)

Thus when the payload mass is less than half of the dry mass, the payload will initially
increase as the fuel-tank volume decreases. For example, taking typical values of
rm0 = 1

3 and rv0 = 1
2 , from equations (4.13) and (4.14) a 1% increase in fuel density

(equivalent to a 1% decrease in tank volume) will give a 1
2% increase in payload

and a 1% decrease in vehicle mass. Similar results can be derived for the other
two constraints. The variation of the vehicle mass and payload with tank size for
the reference vehicle with payload-bay volume proportional to vehicle volume (i.e.
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rv = const.) is (
dmt/mt0

dVtk

)
0
= 2, (4.15)

(
dmp/mp0

dVtk

)
0
=

2rm0 − 1
rm0

. (4.16)

Similarly, for the constant payload-bay volume,(
dmt/mt0

dVtk

)
0
=

2
1 + 3rv0

, (4.17)
(
dmp/mp0

dVtk

)
0
=

2rm0 − 1
rm0(1 + 3rv0)

. (4.18)

For the constant payload-bay volume when rm0 = 1
3 and rv0 = 1

2 , equations (4.17)
and (4.18) give values of 1.2 and −0.6, respectively; values that are 20% larger than
the constant density payload case. The increase in the payload mass is slightly greater
for this latter case, because the increase does not require a bigger payload bay, which
in the previous case absorbed some of the released tank volume.
For all three volume constraints, increasing the fuel density has the double advan-

tage of increasing the payload mass and decreasing the launch mass, but the amount
of change in these masses depends on the constraints applied. However, the largest
changes in the payload and launch mass for a given change in the fuel density are
given by equations (4.15) and (4.16) for rv constant.
In the analysis above, changing the fuel density caused both the launch mass and

the payload mass to change. To assess the potential payload changes for a constant
launch mass, we need to know the rate of change of payload with launch mass for an
unconstrained vehicle, such as the example shown in figure 3. Using the values from
figure 3, the gradient dmp/dmt has values 0.241, 0.136 and 0.08 for constant Vp, rv
and Vp/mp, respectively. Then a 1% increase in fuel density gives 5.3%, 6.7% and
1.8% increases in payload for constant Vp, rv and Vp/mp. We see that because of the
greater sensitivity of the payload to the launch mass for the constant payload-bay
volume case, the payload change with fuel volume is large for this case compared with
the constant payload density case, again demonstrating the importance of payload
density.

(d) Scramjet fuel examples

As a demonstration of the implications of the analysis, we use the data for different
density injectants used as additional propellants in Rudakov & Krjutchenko (1990).
The thrust from the engine is increased by adding extra propellant to a stoichiometric
hydrogen scramjet, with the parameter B being the ratio of the total propellant mass
flow rate to that of stoichiometric hydrogen. The parameter B, as used in Rudakov
& Krjutchenko (1990) needs careful definition for various cases.

(i) For the hydrogen-only scramjet, B = 1 means air and hydrogen are in stoichio-
metric proportions. B = 1.3 means that hydrogen is supplied at a mass rate
30% greater than the stoichiometric value.
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Table 1. Inert gases and other data (after Rudakov & Krjutchenko 1990)

temperature density (kg m−3) flow ratio
substance (K) (tank conditions) r (M = 10)

hydrogen H2 20 71 1.0
helium He 4 129 1.0
neon Ne 27 1206 2.0
argon Ar 87 1393 2.4
krypton Kr 120 2418
xenon Xe 160 2980 2.7
oxygen O2 90 1135

Table 2. Stoichiometric combustion of organic liquids

substance stoichiom. combustion density
(CnHm) mass ratio heat (MJ kg−1) (kg m−3)

hydrogen (LH2) 1.0 120 76
methane (CH4) 2.0 101 300
acetylene (C2H2) 2.6 126 618
JP-7 (C12.5H26) 2.32 — 793

(ii) For the hydrogen–neon scramjet, B = 1.9 means air and hydrogen are in sto-
ichiometric proportions and the neon mass flow is 0.9 times the mass flow of
hydrogen.

(iii) For the hydrogen scramjet with oxygen injection, the oxygen is injected in such
a way that the hydrogen–air–oxygen mixture is stoichiometric. Thus B = 2.5
means that in addition to hydrogen injected at a mass flow to give a stoichio-
metric mixture with the air, extra hydrogen is injected together with whatever
oxygen would permit complete combustion of that extra hydrogen, with the
total mass flow of injected oxygen and extra hydrogen being 1.5 times the mass
flow of hydrogen already giving stoichiometric proportions with the air.

In Rudakov & Krjutchenko (1990) the thrust is given for several flow additives,
including a hydrogen–oxygen mixture and inert gases, such as helium and neon.
The inert gases are studied because of their minimal real gas losses and because
some of them can still offer low molecular weight. The thrust increase for helium and
hydrogen–oxygen addition at the same mass flow is found by Rudakov & Krjutchenko
(1990) to be very nearly the same as that for hydrogen for values of B up to 2.5.
For the range of additive mass flow when helium and hydrogen–oxygen give the
same thrust as hydrogen, the effect of these additives on the vehicle can be analysed
using equations (4.7)–(4.12). Details of these additives are given in table 1. To retain
consistency with the results of Rudakov & Krjutchenko (1990), the density of LH2 in
table 1 is the boiling-point density at 1 atmosphere pressure. (In table 2, a higher tank
density of 76 kg m−3 is used (Heiser & Pratt 1994), which is close to the triple-point
density (National Research Council 1933).) From table 1, the density of liquid helium
is nearly twice that of LH2, whereas the hydrogen–oxygen mixture for complete
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Figure 5. Payload and launch mass ratio for helium additive compared with LH2.

combustion has a density about six times that of hydrogen. For a typical vehicle the
scramjet LH2 fuel tankage represents ca. 80% of the total tankage, so that Vtk from
equation (4.5) varies between 1 and 0.64 for liquid helium and between 1 and 0.33 for
LH2–LOX, depending on the value of B. Substituting these values in equations (4.7)–
(4.12), with rm0 = 1

3 and rv0 = 1
2 , gives the payload and vehicle launch mass changes

for these additives compared with LH2. The ratios of the payload and launch masses
from these equations are shown in figures 5 and 6, for liquid helium and LH2–
LOX, respectively. The ratios are plotted against values of B from 1 (representing
no additives) to 3 (when the additives are twice the mass flow of stoichiometric
hydrogen). There is a small increase in the payload (ca. 5% maximum) and a larger
decrease in the launch mass. That is, for constant Vp or Vp/mp, a liquid helium
additive equal to the stoichiometric LH2 mass flow (i.e. B = 2) gives a launch mass
ca. 12% below that of the equivalent LH2 additive and an LH2–LOX mixture gives
a 20% reduction. To compare payload increases at constant launch mass, a value of
dmp/dmt is required and can again be expected to show that the change for constant
payload-bay volume is significantly greater than for constant payload density.
It is clear from the above analysis that the density of the additives injected into

the flow is important. Neon, which has a greater density than helium or LH2–LOX,
is worthy of investigation. However, the analysis of this section is not applicable,
because the thrust from adding neon to the flow is less than that from adding an
equal mass flow of hydrogen, which is a requirement of the analysis. The addition of
neon and other inert gases, and the prospects of hydrocarbons as fuels, is considered
in the following section.

5. Generalized scramjet fuel analysis

The assumptions made previously have enabled reliable predictions to be made of the
variation in the payload and vehicle launch mass with vehicle volume, for a restricted
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Figure 6. Payload and launch mass ratio for LH2–LOX additive compared with LH2.

range of vehicles that have similar shapes and the same trajectory to orbit. When
a change in the fuel requires a different mass flow rate to obtain the same thrust
the previous assumptions cannot be fully satisfied. However, it is important to try
to assess whether LH2 is the best fuel, even though this may require the use of more
approximate assumptions. Here we try to give an indication of which of the likely
alternative fuels to LH2 are worth further investigation. More specifically, we try to
assess whether using inert fuel additives or hydrocarbons for part of the fuel, instead
of LH2, is beneficial in increasing the payload for a given launch mass.
As a means of assessing the relative merits of different fuels, consider, first, two

reference vehicles of the same size and shape, of which one uses LH2 and the other
uses some alternative fuel or fuel additive with a different mass flow rate to give
the same vehicle thrust. We anticipate that this second vehicle will have some spare
tankage from the use of a denser fuel, which will enable vehicle size to be reduced in
the manner of the previous analysis. The mass flow rate of the alternative fuel, which
is necessary to obtain the same thrust as the LH2 used in the first vehicle, will, in
general, be a complicated function of the vehicle Mach number and the particular
engine characteristics. If, as before, the replacement fuel additive is an inert gas that
is used to replace the additional LH2 fed to the scramjet in excess of that for a
stoichiometric mixture, then representative values of the relative mass flows can be
obtained from Rudakov & Krjutchenko (1990). For example, at Mach 10 the required
mass flow of various gases compared with LH2 varies from about the same rate for
helium to 2.7 times the LH2 rate for xenon, as shown in table 1.
Alternatively, replacing the scramjet stoichiometric LH2 mass flow with a hydro-

carbon, the required mass flow rate of the hydrocarbon for a stoichiometric mixture
will vary from twice the LH2 rate (for methane) to about 2.3 times (for kerosene).
Mass flow rates for these and a number of hydrocarbons are shown in table 2. Also
shown is the approximate combustion heat and the relative density. We see that not
only is there a significant increase in the fuel mass flow required to provide the same
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thrust, but also the combustion heat is typically 10–20% less; thus to give the same
thrust, the mass flow may need to be further increased, depending on whether the
greater nozzle mass flow compensates for the reduced combustion energy. This will
depend on the engine characteristics, but the influence of the ratio r, which is the
mass flow for the replacement fuel compared with LH2 mass flow to give the same
thrust, can be assessed by considering a range of r from 2 to 3.
The extra mass of fuel to be carried will require increased thrust for the vehicle to

maintain the same trajectory unless vehicle mass can be saved elsewhere. To estimate
this extra thrust in the analysis would require more detailed assumptions about the
engine performance (see, for example, Heiser & Pratt 1994), but this is beyond the
scope of the present paper. However, when only a small quantity of LH2 fuel is
replaced, and the substitute fuel is used immediately after second-stage launch, the
extra thrust required to accelerate the extra fuel mass is vanishingly small (i.e. it is
a second-order effect), and it may be ignored. Note that this approach cannot assess
how much LH2 should be replaced, but it can indicate whether it is worth replacing
any of the LH2 with an alternative fuel; i.e. for a range of vehicles we can assess the
relative merits of alternative fuels, and obtain initial rates of payload increase for
the new fuel.
The variation of vehicle mass and payload for a replacement fuel or additive with

the same thrust for the same mass flow as the original fuel has already been obtained
in the previous section under various payload-bay volume constraints. Suppose now
that the replacement fuel (or fuel additive) mass flow is r times the original fuel (or
fuel additive) mass flow for the same scramjet thrust. Then exchanging a small mass
of the original fuel m0, which has volume v0 (equal to m0/ρ0), for a mass rm0 of the
replacement fuel of volume rm0/ρ1, the change in total vehicle mass and total tank
capacity is

∆m = (r − 1)m0, (5.1)
∆Vtank = (rρ0/ρ1 − 1)v0. (5.2)

For the constant density payload vehicle, with the fuel replaced and the vehicle
scaled so that the fuel volume matches the available fuel-tank volume, we have, from
equation (4.13),

∆mt

mt0
=

2rm0∆Vtk

rm0 + rm0rv0 + rv0
+

∆m

mt0
, (5.3)

where the change in tank volume term ∆Vtk is given by

∆Vtk =
∆Vtank

Vtank0
=

(rρ0/ρ1 − 1)v0

Vtank0
. (5.4)

Hence substituting for ∆Vtk and ∆m in equation (5.3) gives

∆mt/mt0

v0/Vtank0
=

2rm0(rρ0/ρ1 − 1)
rm0 + rm0rv0 + rv0

+
(r − 1)ρ0Vtank0

mt0
. (5.5)

Similarly, from equation (4.8) for the change in payload,

∆mp/mp0

v0/Vtank0
=

(2rm0 − 1)(rρ0/ρ1 − 1)
rm0 + rm0rv0 + rv0

; (5.6)
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i.e. for a small fraction v0/Vtank0 of the fuel changed, the fractional changes in the
total vehicle mass and payload mass are given by equations (5.5) and (5.6). The
equivalent equations for the other constraints may be obtained in the same way from
equations (4.15)–(4.18).
In figure 3, a typical variation of payload with vehicle mass is shown for vehicles

where the fuel remains the same but the vehicle shape is unconstrained. Improved
vehicle performance from a fuel change for these vehicles can be achieved if a vehicle,
when scaled in the manner proposed here, has a payload and vehicle mass combi-
nation that lies to the left of or above the appropriate volume constraint line. The
variation of mp with mt for the scaled vehicle is given from equations (5.5) and (5.6),
or their equivalents for the other constraints, as

dmp/mp0

dmt/mt0
=

2rm0 − 1
2rm0 − ε

, (5.7)

where

ε = (rm0 + rm0rv0 + rv0)
r − 1

1 − rρ0/ρ1

ρ0Vtank0

mt0
,

Vp

mp
= const., (5.8)

= rm0
r − 1

1 − rρ0/ρ1

ρ0Vtank0

mt0
, rv = const., (5.9)

= (1 + 3rv0)rm0
r − 1

1 − rρ0/ρ1

ρ0Vtank0

mt0
, Vp = const. (5.10)

We see that ε depends on the multiplication of three terms. Only the first of these
varies for the three different volume constraints. For rm0 = 1

3 and rv0 = 1
2 , this

first term has values of 1, 1
3 and 5

6 , respectively. The second term depends only
on the choice of replacement fuel, with the numerator giving the increase in the
mass flow and the denominator the decrease in its volume. Note that when r = 1,
the conditions are as described in the previous section, and for all constraints the
gradient of equation (5.7) has value 1− 1/2rm0. The final term is a reference-vehicle
constant, which is the ratio of the mass of LH2 that would fill the total tank volume
of the reference vehicle, divided by the reference-vehicle launch mass.

(a) Inert-gas additives

To demonstrate the effect of these fuel changes, consider first the substitution of
the inert gases for the ‘additional liquid hydrogen’, i.e. when the LH2 replaced is the
additional mass flow above the stoichiometric requirement for an LH2 scramjet. For
the constant density payload case, substituting the values for different additives from
table 1 in equations (5.5) and (5.6) gives the resulting incremental changes in vehicle
mass and payload shown in figure 7a for a typical vehicle with rm0 = 1

3 , rv0 = 1
2 and

mt/Vtank = 500 kg m−3. The LH2-fuelled reference vehicle is represented by the dot
at the point (0, 0). The substitution of helium and a hydrogen–oxygen mixture has
been discussed in the previous section. These additives have the same fuel mass flow
rate for the same thrust as LH2 (i.e. r = 1). Thus equation (5.7) with ε = 0 gives
the lines of gradient −1

2 shown in figure 7; i.e. if for a small fraction f of the total
tank volume of the reference vehicle the additional LH2 is replaced by helium (with
the appropriate tank-size reduction), we see from the helium vector in figure 7a that
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Figure 7. (a) Effect of fuel additives replacing LH2 for constant payload density. (b) Effect of fuel
additives replacing LH2 for constant payload-bay volume. (c) Effect of fuel additives replacing
LH2 for constant rv (rm0 = 1

3 , rv0 = 1
2 , mt/Vtank = 500 kg m−3).

a reduction in the total vehicle mass of 0.3f and an increase in payload of 0.16f
is achieved. For the hydrogen–oxygen combination, the changes in the vehicle and
payload masses are both ca. 40% larger as was seen in the previous section. Using
the present analysis other fuels may be compared with these results, but the changes
are only accurate to order f2.

The changes produced by replacing LH2 with the inert gases neon, argon and
xenon are also shown in figure 7a. The changes for neon can be seen to be larger
than for helium or LH2–LOX, even though the mass flow rate for the same thrust is
double these previous additives. For a small fraction f of the original tankage volume
replaced, the increase in the payload is about 0.3f and the decrease in the vehicle
launch mass is about 0.45f for neon. The changes for argon and xenon can be seen
in figure 7a to be similar, the main difference being a slightly smaller decrease in the
launch mass. The change for krypton is not shown, but lies close to the argon and
xenon values.
In figure 7b the changes for a constant payload-bay volume are shown to be similar

in character to those of figure 7a, but slightly larger throughout. The constant rv
case of figure 7c is at a different scale to figure 7a, b, and shows changes that are
about three times as large as the previous constraints. This larger change is due to
the reduction in vehicle size being accompanied for this constraint by a proportionate
reduction in the payload-bay volume.
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Figure 8. (a) Effect of increasing the thrust equivalent mass of the additive fuel in 10% steps.
(b) Effect of increasing rm0 in 10% steps. (c) Effect of increasing rv0 in 10% steps.

Figure 7 shows that the use of the inert gases or LH2–LOX as additives instead
of LH2 has the double advantage of both increasing the payload and decreasing the
vehicle mass. The decrease in vehicle mass can also represent a further increase in
the payload when dmp/dmt is positive, as shown for example in figure 3.

(i) Variation of fuel mass flow for equal thrust

These encouraging results from fuel additives are based on approximate values of
the equal thrust mass flow factor (r) as given in table 1, and thus it is important to
assess the sensitivity of the results to changes in this parameter. In figure 8a the same
vectors as in figure 7a are shown (minus the argon vector), to which are added results
for increases in the mass of the additive required to obtain the same thrust. The lines
emanating from the ends of the original vectors show the variation in the vertices
of the vectors with increasing r, with the dots on the lines representing increases of
10%, 20%, 30%, 40% and 50% in r. We see that the payload increase remains largely
unaffected, but the vehicle mass change is reduced by these increases in r. However,
it is clear that the results are not particularly sensitive to the value of r. An error in r
of order 10%, for example, will not significantly affect the conclusions, which remain:
(1) the substitution of propellant additives that are denser than LH2 is beneficial;
and (2) the potentially most promising additives are neon or LH2–LOX.
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2 , mt/Vtank = 500 kg m−3).

(ii) Variation of the reference vehicle parameters

The results of figures 7 and 8a are shown for the reference values rm0 = 1
3 , rv0 = 1

2
and mt/Vtank = 500 kg m−3. However, they are typical of the results for other values
of these parameters. For example, the changes in the performance vectors for the
constant density payload case when rm0 increases from 1

3 to 1
2 (in 10% steps) are

shown in figure 8b. We see that the main effect is to reduce the incremental increase
in the payload, although the vehicle mass reduction remains significant and increases
slightly. When rm0 = 1

2 the incremental payload change is zero, as might have been
anticipated from figure 1. In figure 8c, the changes in the performance vectors with
the volume parameter are shown, again for the constant density payload case. As
the basic configuration volume parameter rv0 increases in 10% steps from 1

2 to 3
4 , we

see that the magnitudes of the vectors are reduced slightly. Similar results hold for
the other payload constraints.

(b) Hydrocarbon fuels

Another fuel change of potential importance is the substitution of stoichiometric
LH2 fuel with that of other hydrocarbons. In table 2, the properties of a number of
hydrocarbons of interest are shown from methane to kerosene (JP-7).
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Figure 10. Payload and launch mass change when kerosene replaces LH2.

Suppose again, that following second-stage launch, a quantity of LH2 is replaced
by another fuel that gives the same scramjet thrust. Then the changes in launch mass
and payload can again be calculated from equations (5.5) and (5.6). These changes
are shown in figure 9 for our typical configuration, where the mass flow for the same
thrust is based on the approximate mass flows quoted in table 2. Figure 9a–c shows
results for constant payload density, constant payload-bay volume and constant rv
as before. The replacement fuels shown are methane, acetylene and kerosene. We see
that acetylene has the potential to give a significant improvement in performance.
However, its physical properties make it undesirable as a fuel. The paraffins are more
amenable as fuels, and the simplest paraffin, methane, is shown to initially increase
the payload by 0.18f and decrease the launch mass by 0.21f . The higher paraffins
have similar performance, with a complex mixture of hydrocarbons forming kerosene
giving a 0.26f increase in payload and a 0.33f decrease in launch mass. Clearly,
the hydrocarbons have potential for improving the performance and justify further
investigation as a scramjet fuel.
Without further analysis it is not in general possible to predict how the incre-

mental performance gains found might translate into more substantial gains when a
significant fraction of the LH2 fuel is replaced. However, we can demonstrate quan-
titatively the effect of fuel substitution by reducing the payload mass to compensate
for the increased fuel mass. Although this is probably not an efficient way of accom-
modating the extra mass, it will serve to demonstrate the type of response expected
as the fuel is replaced. A further complication is that the denser fuel is best con-
sumed during the early part of the trajectory, whereas the payload mass affects the
complete trajectory. Thus even the fundamental assumption of identical trajectories
ceases to be strictly valid as the refuelled vehicle will have greater mass during the
early part of the trajectory and less mass during the latter part.
The results are shown in figure 10 for values of r (the equal thrust fuel mass flow
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Table 3. Payloads of second stage scramjet orbiters with a launch Mach number of 7
(after L. H. Townend and R. A. East, personal communication)

LH2 LH2 + neon
propellant ︷ ︸︸ ︷ ︷ ︸︸ ︷ kerosene

launch mass (Mg) 110 136 110 119 110
payload mass (kg) 4250 7500 6400 7500 7500

ratio) of 2 and 2.5, which span the expected values for kerosene. We see that as
the LH2 is replaced by kerosene, the payload at first rises to a maximum and then
falls as more of the payload is foregone to compensate for the extra fuel mass. The
vehicle mass, however, continues to fall as the vehicle size reduces when using the
denser fuel. When ca. 20% of the original tank volume has been replaced with smaller
kerosene tanks, we see that the payload is close to its original value but the total
vehicle launch mass is only ca. 90% of the original mass before kerosene substitution.
Although these results indicate the potential for the vehicle performance to change

with the propellant, they apply for a limited class of vehicles with the same trajec-
tory and shape and other constraints. Relaxation of these constraints can have a
significant effect on the vehicle performance, as has been demonstrated in studies
of particular configurations (L. H. Townend and R. A. East, personal communica-
tion). For example, payloads for scramjet orbiters with a launch Mach number of
7 are shown in table 3, where the trajectories used are different for the different
propellants. These suggest that the initial advantages of hydrocarbon propellants
shown earlier can translate into significant increases in payload when the trajectory
is tailored to the higher-density vehicle, which hydrocarbons make possible.

6. Conclusions

A restricted class of scramjet orbiters, which have similar shapes and the same tra-
jectories to orbit, is used to establish relationships between the launch mass, the
payload mass, the vehicle volume and other parameters of the vehicle. It is found
that decreasing the volume by increasing the payload density or increasing the fuel
density, has the doubly beneficial effect of increasing the payload and reducing the
vehicle launch mass. Hence it is important to consider payload densities that are as
large as possible and to investigate denser fuels than liquid hydrogen.
Scramjets commonly use fuel-rich mixtures to increase the thrust. The substitu-

tion of helium or a stoichiometric LH2–LOX mixture instead of LH2 for all or part
of the additional fuel is shown for typical vehicle parameters to result in an increase
in payload of ca. 5% while decreasing the launch mass by ca. 20%. It has been sug-
gested from engine studies that neon and other inert gases may also be desirable
additives. These additives require a greater mass flow for the same thrust and so
cannot directly be assessed by the present analysis. However, the incremental gain
from the substitution of a small quantity of replacement fuel can be found. This is
used to assess whether there is any potential gain from using the inert gases as an
additive to enhance the engine thrust, and whether they are likely to be preferable to
other additives. It is found that the initial benefits from neon are slightly better than
those from injecting an additional stoichiometric mixture of hydrogen and oxygen.
The other inert gases are inferior to neon.
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Similar considerations apply when replacing the LH2 burnt in the scramjet with
a hydrocarbon. It is found that the initial improvement in the performance using
kerosene is better than that obtained with methane or acetylene. But substitution
of any of them is capable of increasing the payload and decreasing the launch mass
compared with LH2, although for practical reasons acetylene would not normally be
used as a fuel. More research is needed to assess the best practical combination of
fuels to maximize the payload and to allow relaxation of the constraints imposed in
this paper. In particular, relaxation of the trajectory and vehicle shape restrictions
may permit further improvement and influence the choice of fuel.

Nomenclature

a0–a3 dry mass constant coefficients (equation (3.3))
B total scramjet propellant mass flow over stoichiometric

hydrogen mass flow for the incoming air
l linear vehicle scaling factor
mdry vehicle dry mass (equation (3.6))
mp payload mass (equation (3.7))
mrprop rocket propellant mass
ms fuel scramjet propellant mass
mt vehicle mass (equations (3.1), (3.5))
r ratio of propellant mass flows for the same thrust
rm vehicle mass ratio (mp/mdry)
rv vehicle volume ratio (Vp/Vtank)
Vp volume of payload
Vt volume of vehicle tanks and payload (equation (4.1))
Vtank volume of propellant tanks
Vtk tank volume ratio for fuel density change (equation (4.5))
subscripts
0 unscaled or reference vehicle
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